- Visibility 80 Views
- Downloads 59 Downloads
- Permissions
- DOI 10.18231/j.ijohd.12662.1937277689
-
CrossMark
- Citation
Biochemical and microbial profile of saliva in children with black extrinsic tooth stains
Background: Black stain (BS) is a type of extrinsic discoloration seen in children, often along the cervical third of teeth. Though BS is linked to chromogenic bacteria and has been associated with lower caries prevalence, its aetiology is unclear. This study aimed to evaluate salivary mineral composition and bacterial profile of children with BS.
Methodology: Oral examination was conducted on 240 children aged between 3–14 years. Salivary levels of copper, iron, sodium, calcium, and phosphorus were analyzed in children with and without BS. Bacterial profiling involved culture techniques and identification via VITEK® 2 and 16S rRNA sequencing.
Results: Children with BS showed significantly higher salivary copper and lower iron and sodium levels. Actinomyces species, including A. israelii and S. odontolytica, predominated the bacterial profile. Cariogenic microorganisms were less prevalent.
Conclusion: High copper and Actinomyces dominance may contribute to the lower caries risk in children with BS, suggesting a protective role.
References
- Qiao C, Han R, Yang J, Huang H, Ma L. Black stain and dental caries in primary dentition of preschool children in Qingdao, China. J Clin Pediatr Dent. 2024;48(4):200–5. https://doi.org/10.22514/jocpd.2024.094
[Google Scholar] - Dong X, Zhao W, Ma S, Li X, Li G, Zhang S. Oral microbial profiles of extrinsic black tooth stain in primary dentition: a literature review. J Dent Sci. 2024;19(3):1369–79. https://doi.org/10.1016/j.jds.2024.02.028
[Google Scholar] - Żyła T, Kawala B, Antoszewska-Smith J, Kawala M. Black stain and dental caries: a review of the literature. Biomed Res Int. 2015;2015:469392. https://doi.org/10.1155/2015/469392
[Google Scholar] - Janjua U, Bahia G, Barry S. Black staining: an overview for the general dental practitioner. Br Dent J. 2022;232(12):857–60. https://doi.org/10.1038/s41415-022-4345-0
[Google Scholar] - Mousa HRF, Radwan MZ, Wassif GOM, Wassel MO. The association between black stain and lower risk of dental caries in children: a systematic review and meta-analysis. J Egypt Public Health Assoc. 2022;97(1):13. https://doi.org/10.1186/s42506-022-
[Google Scholar] 00107-3. - Zhang F, Li Y, Xun Z, Zhang Q, Liu H, Chen F. A preliminary study on the relationship between iron and black extrinsic tooth stain in children. Lett Appl Microbiol. 2017;64(6):424–9. https://doi.org/10.1111/lam.12728
[Google Scholar] - Carpenter CE, Ward RE. Iron determination by ferrozine method. In: Food Analysis Laboratory Manual. Food Science Text Series. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-44127-
[Google Scholar] 6_18. - Mohammed F, Manohar V, Jose M, Thapasum AF, Mohamed S, Shamaz BH, et al. Estimation of copper in saliva and areca nut products and its correlation with histological grades of oral submucous fibrosis. J Oral Pathol Med. 2015;44(3):208–13. https://doi.org/10.1111/jop.12222
[Google Scholar] - Shirzaiy M, Heidari F, Dalirsani Z, Dehghan J. Estimation of salivary sodium, potassium, calcium, phosphorus and urea in type II diabetic patients. Diabetes Metab Syndr. 2015;9(4):332–6. https://doi.org/10.1016/j.dsx.2013.02.025
[Google Scholar] - Kumbhojkar SV, Kale AD, Kumbhojkar VR, Desai KM. Salivary calcium as a diagnostic tool for screening of osteoporosis in postmenopausal women. J Oral Maxillofac Pathol. 2019;23(2):192–7. https://doi.org/10.4103/jomfp.JOMFP_133_19
[Google Scholar] - Bevinagidad S, Setty S, Patil A, Thakur S. Estimation and correlation of salivary calcium, phosphorous, alkaline phosphatase, pH, white spot lesions, and oral hygiene status among orthodontic patients. J Indian Soc Periodontol. 2020;24(2):117–21. https://doi.org/10.4103/jisp.jisp_440_19
[Google Scholar] - Njenga WP, Mwaura FB, Wagacha JM, Gathuru EM. Methods of isolating actinomycetes from the soils of Menengai Crater in Kenya. Arch Clin Microbiol. 2017;8(3):45. https://doi.org/10.21767/1989-
[Google Scholar] - Kumar RR, Jadeja VJ. Isolation of Actinomycetes: a complete approach. Int J Curr Microbiol App Sci. 2016;5(5):606–18. https://doi.org/10.20546/ijcmas.2016.505.062
[Google Scholar] - Fernando García-Garrote, Emilia Cercenado, and Emilio Bouza. Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J Clin Microbiol. 2000;38(6):2108–11. https://doi.org/10.1128/JCM.38.6.2108-2111.2000
[Google Scholar] - HiMedia Laboratories. Hi-PCR® 16S rRNA SYBr PCR Kit [Internet]. Mumbai, India: HiMedia Laboratories; [cited 2025 May 27].
- McTigue DJ. Overview of trauma management for primary and young permanent teeth. Dent Clin North Am. 2013;57(1):39–57. https://doi.org/10.1016/j.cden.2012.09.005
[Google Scholar] - Alammari ST, Al Rubaie FM, Shukr BS. Chromogenic black dental staining in children: a case report. Cureus. 2024;16(1):e51984. https://doi.org/10.7759/cureus.51984
[Google Scholar] - Dutra de Oliveira RV, Sampaio Bonafé FS, Spolidorio DMP, Koga- Ito CY, de Farias AL, Kirker KR, et al. Streptococcus mutans and Actinomyces naeslundii interaction in dual-species biofilm. Microorganisms. 2020;8(2):194. https://doi.org/10.3390/microorganisms8020194
[Google Scholar] - Meyer F, Enax J, Epple M, Amaechi BT, Simader B. Cariogenic biofilms: development, properties, and biomimetic preventive agents. Dent J (Basel). 2021;9(8):88. https://doi.org/10.3390/dj9080088
[Google Scholar] - Loesche WJ. Microbiology of Dental Decay and Periodontal Disease. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston;
- Chapter 99.
- Heinrich-Weltzien R, Bartsch B, Eick S. Dental caries and microbiota in children with black stain and non-discoloured dental plaque. Caries Res. 2014;48(2):118–25. https://doi.org/10.1159/000353469
[Google Scholar] - Mutsaddi S, Kotrashetti VS, Nayak R, Pattanshetty S, Hosmani JV, Babji D. Association of dental caries in children with black stain and non-discolored dental plaque: A microbiological study. J Adv Clin Res Insights. 2018May;5(3):59–64.
- Gayatri A, Fauziah E, Suharsini M. Antibacterial effect of virgin coconut oil on the viability of chromogenic bacteria that causes dental black stain in children. Int J Appl Pharm. 2017;9:83–6. https://doi.org/10.22159/ijap.2017.v9s2.20
[Google Scholar] - Veses V, González-Torres P, Carbonetto B, Jovani-Sancho MdM, González-Martínez R, Cortell-Ballester I, et al. Dental black plaque: metagenomic characterization and comparative analysis with white- plaque. Sci Rep. 2020;10:1–11. https://doi.org/10.1038/s41598-020-
[Google Scholar] 72460-2. - Çelik ZC, Çakiris A, Yanıkoğlu F, et al. Metagenomic analysis of black-stained plaques in permanent dentition. Arch Oral Biol. 2021;128:105171. https://doi.org/10.1016/j.archoralbio.2021.105171
[Google Scholar] - Zheng L, Cao T, Xiong P, Ma Y, Wei L, Wang J. Characterization of the oral microbiome and gut microbiome of dental caries and extrinsic black stain in preschool children. Front Microbiol. 2023;14:1081629. https://doi.org/10.3389/fmicb.2023.1081629
[Google Scholar] - Chen L, Zhang Q, Wang Y, Zhang K, Zou J. Comparing dental plaque microbiome diversity of extrinsic black stain in the primary dentition using Illumina MiSeq sequencing technique. BMC Oral Health. 2019;19(1):269. https://doi.org/10.1186/s12903-019-0960-
[Google Scholar] - Asokan S, Varshini KR, Priya PRG, Vijayasankari V. Association between black stains and early childhood caries - a systematic review. Indian J Dent Res. 2020;31(6):957–62. https://doi.org/10.4103/ijdr.IJDR_327_20
[Google Scholar] - Llena-Puy C. The rôle of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal. 2006;11:E449–55
- Klimuszko E, Orywal K, Sierpinska T, Sidun J, Golebiewska M. The evaluation of zinc and copper content in tooth enamel without any pathological changes – an in vitro study. Int J Nanomedicine. 2018;13:1257–64. https://doi.org/10.2147/IJN.S155228
[Google Scholar] - Brookes SJ, Shore RC, Robinson C, Wood SR, Kirkham J. Copper ions inhibit the demineralisation of human enamel. Arch Oral Biol. 2003;48(1):25–30. https://doi.org/10.1016/s0003-9969(02)00162-
[Google Scholar] - 218 Sudha P and Konde / International Journal of Oral Health Dentistry 2025;11(3):213–218
- Singh K, Senadheera DB, Lévesque CM, Cvitkovitch DG. The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol. 2015;197(15):2545–57. https://doi.org/10.1128/JB.02433-14
[Google Scholar] - Dunning JC, Ma Y, Marquis RE. Anaerobic killing of oral streptococci by reduced, transition metal cations. Appl Environ Microbiol. 1998;64(1):27–33. https://doi.org/10.1128/AEM.64.1.27-33.1998
[Google Scholar] - Khan A, Patthi B, Singla A, Malhi R, Goel D, Kumari M. The role of copper and zinc in the prevention of dental caries: a systematic review. J Indian Assoc Public Health Dent. 2020;18(1):4–12. https://doi.org/10.4103/jiaphd.jiaphd_75_19
[Google Scholar] - Afseth J, Oppermann RV, Rolla G. The in vivo effect of glucose solutions containing Cu++ and Zn++ on the acidogenicity of dental plaque. Acta Odontol Scand. 1980;38(4):229–33. https://doi.org/10.3109/00016358009003494
[Google Scholar] - Abdullah AZ, Strafford SM, Brookes SJ, Duggal MS. The effect of copper on demineralization of dental enamel. J Dent Res. 2006;85(11):1011–5. https://doi.org/10.1177/154405910608501107
[Google Scholar] - Hussein AS, Almoudi MM, Abu-Hassan MI, Schroth RJ, Saripudin B, Mohamad MSF. Serum and saliva 25(OH)D levels in relation to dental caries in young children. J Clin Pediatr Dent. 2021;45(6):414–20. https://doi.org/10.17796/1053-4625-45.6.8
[Google Scholar] - Svensäter G, Borgström M, Bowden GHW, Edwardsson S. The acid-tolerant microbiota associated with plaque from initial caries and healthy tooth surfaces. Caries Res. 2003;37(6):395–403. https://doi.org/10.1159/000073390
[Google Scholar] - Chandel S, Khan MA, Singh N, Agrawal A, Khare V. The effect of sodium bicarbonate oral rinse on salivary pH and oral microflora: a prospective cohort study. Natl J Maxillofac Surg. 2017;8(2):106–9. https://doi.org/10.4103/njms.NJMS_36_17
[Google Scholar] - Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci. 2012;13(4):4295–320. https://doi.org/10.3390/ijms13044295
[Google Scholar]
How to Cite This Article
Vancouver
P S, Konde S. Biochemical and microbial profile of saliva in children with black extrinsic tooth stains [Internet]. Int J Oral Health Dent. 2025 [cited 2025 Oct 23];11(3):213-218. Available from: https://doi.org/10.18231/j.ijohd.12662.1937277689
APA
P, S., Konde, S. (2025). Biochemical and microbial profile of saliva in children with black extrinsic tooth stains. Int J Oral Health Dent, 11(3), 213-218. https://doi.org/10.18231/j.ijohd.12662.1937277689
MLA
P, Sudha, Konde, Sapna. "Biochemical and microbial profile of saliva in children with black extrinsic tooth stains." Int J Oral Health Dent, vol. 11, no. 3, 2025, pp. 213-218. https://doi.org/10.18231/j.ijohd.12662.1937277689
Chicago
P, S., Konde, S.. "Biochemical and microbial profile of saliva in children with black extrinsic tooth stains." Int J Oral Health Dent 11, no. 3 (2025): 213-218. https://doi.org/10.18231/j.ijohd.12662.1937277689